

CHEMISTRY 111 GENERAL CHEMISTRY I

BULLETIN INFORMATION

CHEM 111: General Chemistry I (4 credit hours)

Course Description:

A survey of the principles that underlie all chemistry with applications illustrating these principles

Prerequisites: MATH 111 or 115

Note: Three lecture, one recitation, and two laboratory hours per week.

SAMPLE COURSE OVERVIEW

ТВА

ITEMIZED LEARNING OUTCOMES

Upon successful completion of Chemistry 111, students will be able to:

- 1. Define and employ chemical language and symbolism
- 2. Summarize the important scientific discoveries that led to the development of modern chemistry
- 3. Demonstrate recognition that the natural world has an atomic and molecular basis which successfully explains its physical phenomena
- 4. Explain the fundamental principles of molecular structure and shape
- 5. Use dimensional analysis with proper attention to units and significant figures, and name and classify inorganic compounds
- 6. Balance chemical equations and use stoichiometric relationships and the mole concept to calculate product and reactant amounts
- 7. Identify different types of reactions (precipitation, neutralization, and oxidation-reduction) and predict the outcome of these reactions
- 8. Explain the first law of thermodynamics and the role of energy and enthalpy in chemical reactions and perform thermochemical calculations
- 9. Explain the basic concepts of quantum theory, determine the electron configurations of atoms, and use periodic trends to make predictions about atomic properties
- 10. Explain theories of chemical bonding and determine the molecular geometry of molecules using vsepr theory
- 11. Apply gas laws and kinetic molecular theory to processes involving gases.
- 12. Explain the intermolecular attractive forces that determine the properties of the states of matter and phase behavior
- 13. Explain colligative properties and their use in determining the characteristic of solutions
- 14. Discuss the importance of chemistry in our everyday lives and in the financial realities of a global economy

- 15. Discuss, through examples, the impact of chemical phenomena on the fields of medicine, pharmacy, dentistry, biology, and physics
- 16. Explain the fundamentals of acid-base chemistry

SAMPLE REQUIRED TEXTS/SUGGESTED READINGS/MATERIALS

- 1. Reger, Goode & Mercer, "Chemistry Principles & Practice", 3rd Ed.
- 2. General Chemistry Laboratory Experience by Freeman and Reger (lab manual)

SAMPLE ASSIGNMENTS AND/OR EXAMS

<u>METHODS OF ASSESSING OUTCOMES</u>: The expected learning outcomes will be assessed through the use of homework assignments and/or quizzes, exams, laboratory reports and the final exam.

1. 3 Hour Exams

- a. <u>EXAM I</u>: Students will employ the terminology of the study of Chemistry and will demonstrate an understanding of matter, measurements and uncertainty, Dalton's Atomic Theory, atomic composition, masses, and structure, the periodic table, chemical nomenclature and historical experiments as related to modern day.
- b. EXAM II: As an extension of the material from exam I, the students will demonstrate an understanding of chemical equations and formulas, mole and molar mass, molarity, stoichiometry and limiting reactants, enthalpy and thermochemical equations, calorimetry and Hess's Law, properties and measurements of gases, the gas laws including the ideal gas law, Dalton's law of partial pressure, the kinetic molecular theory of gases and any current societal impact discussed related to these topics.
- c. EXAM III: As an extension of the material from exam I and II, the students will demonstrate an understanding of the nature of light, matter as waves, quantum numbers and energy levels for multielectron atoms, electron configurations and the periodic table trends, lewis symbols, bonding, resonance structures and bond energies.

2. Final Exam

d. <u>FINAL EXAM</u>: Students will demonstrate an understanding of the material from exams I, II, and III, in addition to valence-shell electron-pair repulsion theory, polarity and valence bond theory, molecular orbitals, phase changes and phase diagrams, intermolecular attractions, and the properties and structures of crystalline solids.

3. OWL Online Homework

- e. <u>OWL ONLINE HOMEWORK:</u> Students will demonstrate critical thinking and problem solving through the OWL homework assignments (approximately 20 chemistry problems for each chapter.) The assignments are based on the text book and follow the chapter progression according to the lecture schedule.
- 4. Lab
 - <u>f.</u> <u>LABORATORY REPORTS</u>: The lab component will include 10 labs, which consist of lab reports, exercises, and discussions of research methodology as related to

Safety & Laboratory Techniques, the physical properties of substances, determination of the percent of copper in Copper Sulfate Pentahydrate, the preparation of Aspirin, determination of the Concentration of a NaOH Solution through acid-base titration, heats of formation, determination of R, Ideal gas Constant, paper chromatography, waters of hydration, vapor density, and shapes of molecules.

SAMPLE COURSE OUTLINE WITH TIMELINE OF TOPICS, READINGS/ASSIGNMENTS, EXAMS/PROJECTS

EXAMIS/TROS	
<u>Week 1:</u>	Syllabus and introduction
<u>Week 2:</u>	Chapter 1
	The Nature of Science and Chemistry
	Matter
	Measurements and Uncertainty
	Measurements and Units
	Chapter 2
	Dalton's Atomic Theory
	Atomic Composition & Structure
	Atomic Masses
	Describing Atoms & Ions
	The Periodic Table
Week 3:	Chapter 2
	Molecules and Molecular Masses
	Ionic Compounds
	Chemical Nomenclature
	Physical Properties of Ionic & Molecular Compounds
	Chapter 3
	Chemical Equations
	The Mole & Molar Mass
Week 4:	Chapter 3
	The Mole & Molar Mass
	Chemical Formulas
	Mass Relationships in Chemical Equations
Week 5:	Chapter 3
	Limiting Reagents
	EXAM I-class-11: Chapters 1- 3
	Chapter 4
	Ionic Compounds in Aqueous Solution
	Molarity
Week 6:	Chanter 4
<u>Week or</u>	Molarity
	Stoichiometry Calculations for Reactions in Solution
	Chemical Analysis
	Chanter 5

	Energy, Heat, & Work
	Enthalpy & Thermochemical Equations
<u>Week 7:</u>	Chapter 5
	Calorimetry
	Hess's Law
	Standard Enthalpy of Formation
	Chapter 6
	Properties & Measurements of Gases
	Gas Laws
<u>Week 8:</u>	Chapter 6
	The Ideal Gas Law
	Stoichiometry Calculations Involving Gases
	Dalton's Law of Partial Pressure
	Kinetic Molecular Theory of Gases
	Chapter 6
	Diffusion & Effusion
	Deviations from Ideal Behaviour
Week 9:	Exam II Review
	EXAM II-class-23: Chapters 4-6
<u>Week 10:</u>	Chapter 7
	The Nature of Light
	Line Spectra and the Bohr Atom
	Matter as Waves
	Quantum Numbers in the Hydrogen Atom
	Energy Levels for Multielectron Atoms
	Electrons for Multielectron Atoms
	Electron Configurations of Heavier Atoms
<u>Week 11:</u>	Chapter 8
	Electronic Structure and the Periodic Table
	Electron Configurations of Ions
	Sizes of Atoms and Ions
	Ionization Energy
	Electron Affinity
	Trends in the Chemistry of Elements in Group 1A, 2A, and 7A
<u>Week 12:</u>	Chapter 9
	Lewis Symbols
	Ionic Bonding
	Covalent Bonding
	Electronegativity
	Formal Charge
Week 13:	Chapter 9
	Resonance in lewis Structures
	Molecules that do not satisfy the octet rule
	Bond Energies

	EXAM III-Class-35: Chapters 7-9
<u>Week 14:</u>	Chapter 10
	Valence-Shell Electron-Pair Repulsion Model
	Polarity of Molecules
	Valence Bond Theory
	Multiple Bonds
	Molecular Orbitals: Homonuclear Diatomic Molecules
	Heteronuclear Diatomic Molecules & Delocalized Molecular Orbitals
<u>Week 15:</u>	Chapter 11
	Kinetic Molecular Theory
	Phase Changes
	Phase Diagrams
	Intermolecular Attractions
	Properties of Liquids and Intermolecular Attractions
	Properties of Solids and Intermolecular Attractions
<u>Week 16:</u>	Chapter 11
	Structures of Crystalline Solids
	FINAL EXAMS According to University exam schedule

LABORATORY SCHEDULE

Experiments will be performed on the dates indicated. Bring your laboratory manual, text, calculator and a pen to the lab. (Keep this sheet in your laboratory manual for ready reference).

<u>Week 2:</u>	Safety & Laboratory Techniques
<u>Week 3:</u>	<u>The Physical Properties of Substances:</u> Chapter 1 The Nature of Science and Chemistry, Measurements and Uncertainty, Measurements and Units
	Chapter 2 Atomic Composition & Structure, Atomic Masses, Describing Atoms & Ions , The Periodic Table, Physical Properties of Ionic & Molecular Compounds
<u>Week 4:</u>	<u>Percent of Copper in Copper Sulfate Pentahydrate:</u> Chapter 3 Chemical Equations, The Mole & Molar Mass, Chemical Formulas, Mass Relationships in
<u>Week 5:</u>	<u>Preparation of Aspirin</u> Chemical Equations, Limiting Reagents Chapter 4 Ionic Compounds in Aqueous Solution, Molarity

Week 6:	<u>Acid-Base Titration: Determination of the Concentration of a NaOH Solution*</u> 5r*
	Stoichiometry Calculations for Reactions in Solution
	Chemical Analysis
<u>Week 7:</u>	Heats of Formation
	Chapter 5
	Energy, Heat, & Work
	Enthalpy & Thermochemical Equations Hess's Law, Standard Enthalpy of Formation
<u>Week 8:</u>	Determination of R, Ideal gas Constant
	Chapter 6
	Properties & Measurements of Gases
	Gas Laws
	The Ideal Gas Law
	Stoichlometry Calculations Involving Gases
<u>Week 9:</u>	Paper Chromatography
	Chapter 8
	Electronic Structure and the Periodic Table
	Electron Configurations of lons
	Sizes of Atoms and Ions, Electron Affinity
<u>Week 10:</u>	Waters of Hydration
	Chapter 11
	Properties of Liquids and Intermolecular Attractions, Properties of Solids and Intermolecular Attractions, Structures of Crystalline Solids
<u>Week 11:</u>	<u>Make-up Lab – Molar mass – Vapor Density</u>
	Chapter 6
	Dalton's Law of Partial Pressure
	Kinetic Molecular Theory of Gases, Diffusion & Effusion, Deviations from
	Ideal Behavior
<u>Week 12:</u>	Shapes of Molecules and Lab Clean-up
	Chapter 10
	Valence-Shell Electron-Pair Repulsion Model, Polarity of Molecules,
	Valence Bond Theory, Multiple Bonds, Molecular Orbitals: Homonuclear
	Diatomic Molecules Heteronuclear Diatomic Molecules & Delocalized
	Molecular Orbitals