

MARINE SCIENCE 101 THE OCEAN ENVIRONMENT

BULLETIN INFORMATION

MSCI 101 - The Ocean Environment (4 credit hours)

Course Description:

Origin and evolution of the oceans, plate tectonics, ocean circulation, waves and tides, seawater and sediment composition, and influences on biology. Three lecture and three laboratory hours per week. Scheduled field trips required.

Prerequisites: science, engineering, or education major or consent of instructor

SAMPLE COURSE OVERVIEW

Marine science is inherently integrative, encompassing four main scientific sub-disciplines: biological, chemical, geological, ad physical oceanography. Therefore, in order to understand the oceans and become a marine scientist, one must first know the fundamental concepts within each of these areas. This course is part of a two course series. In MSCI 101, we will focus more on the physical aspects of Marine Science whereas MSCI 102 will focus in depth on Biology.

ITEMIZED LEARNING OUTCOMES

Upon successful completion of Marine Science 101, students will be able to:

- 1. Demonstrate understanding of current theories concerning the origin of the Earth and the waters that cover its surface.
- 2. Identify oceanic physical features and relate their structures to theories of their origin.
- 3. Demonstrate the use of basic Marine Science principles to develop first order hypotheses on the basic chemical properties of seawater in terms of the unique features of the water molecule, dissolved salts, and dissolved gases. Why is the ocean salty?
- 4. Describe atmospheric circulation and explain how it impacts the ocean.
- 5. Describe motions in the sea—currents, waves, and tides—in terms of their causes and their effects on the land.
- 6. Discuss the ocean's role in global climate and the impact on the oceans and society as the ocean is impacted by changes in climate
- 7. Identify the causes of marine pollution, and demonstrate understanding of the problems of containment and alleviation.
- 8. Demonstrate understanding of the history of oceanography and the advancements in technology used in exploring the ocean.
- 9. Describe the differences between inductive and deductive reasoning.
- 10. Describe the contemporary issues related to ocean acidification and global climate change and the impacts on society

SAMPLE REQUIRED TEXTS/SUGGESTED READINGS/MATERIALS

- An Introduction to the World's Oceans, 10th Ed., by Keith Sverdrup and Virginia Armburst
- 2. The Ocean Environment, lab manual, 2nd Ed., by Michelle Hardee and Claudia Benitez-Nelson
- 3. Papers from the literature and handouts, reliable Internet sources

SAMPLE ASSIGNMENTS AND/OR EXAM

- 1. Three hour exams: The format of the exams will vary between multiple choice, short answer, diagram interpretation, and short essay. Exams will take place during regularly scheduled lectures. Unless otherwise specified, exams are closed book/notes. Calculators and rulers are permitted.
- 2. Final Exam: Cumulative with format identical to midterms
- 3. Lecture Homework
- **4.** Laboratory quizzes and reports: As part of the laboratory exercises there is a mandatory field trip to the coast.

SAMPLE COURSE OUTLINE WITH TIMELINE OF TOPICS, READINGS/ASSIGNMENTS, EXAMS/PROJECTS

Week 1:	Introduction and history of Marine Science Careers in Marine Science, misconceptions and preconceptions First Scientific Expeditions (early Polynesians, Challenger)
<u>Week 2:</u>	Plate tectonics Formation and basic structure of the Earth The layered Earth Introduction to ocean basin features Seafloor spreading Plate boundaries: Faults, earthquakes, and volcanism Hot Spots
<u>Week 3:</u>	Continental margins and ocean basins Bathymetry and basic topography

- Week 4:SedimentsSources, size classes, classification, transportDistribution and the sedimentary recordExam 1
- Week 5: Ocean structure

The water molecule Heat Capacity Water temperature and density Introduction to thermohaline circulation

- Weeks 6-7:Seawater chemistry
Constituents of seawater (sources, sinks and distributions)
Conservative versus non conservative behavior
Effects of salinity on water properties (e.g. density)
Residence times
Dissolved gases, CO2 and O2 (intro to climate change)
Carbonate buffer system and pH (Revelle factor and CO2)
- Week 8:Ocean and atmospheric circulation
Heat budgets
High/low pressure
Hadley cells, wind bands
Coriolis, hurricanes and typhoons
Wind driven circulation
major ocean currents
Coriolis, Ekman pumping, geostrophic flow, upwelling
Thermohaline circulation revisited (T-S-ρ diagrams)
Exam 2

Week 9:Waves and tidesDescriptions, propertiesGeneration and propagation: wind waves, seiches and tsunamisTide theory and patterns (moon versus the sun)

Week 10-11:Introduction to Primary Production/Biogeochemical cycles
Phytoplankton and zooplankton
Interaction of light, nutrients, mixed layer
Photosynthesis (CO2 and O2), respiration, redox chemistry
Trophic dynamics, food web (Intro to microbial loop versus export production)
Hydrothermal vent communities and anoxic basins (chemosynthesis)

Week 12 -13:Coasts and coastal processesEstuary circulation and evolutionSediment transport and accumulationBeachesSand spitsBarrier islandsAnthropogenic impacts: flooding, and erosion.Exam 3

Week 14:Oceans and climate change: rising sea levelGreenhouse gases, ocean acidificationEl Nino, La Nina, Fe fertilization

Final Exam according to University exam schedule